

EVALUATION OF FLEXIBILITY IN TWO TRAINING PROGRAMS FOR VOLLEYBALL PLAYERS: PREDICTION OF PHYSICAL PARAMETER

P. Vignesh*, Dr. B. S. Sha Yin Sha & Dr. M. Suresh Kumar*****

* Ph.D Research Scholar, Department of Physical Education, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India

** Research Supervisor, Director of Physical Education, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India

*** Director of Physical Education, Ganesar College of Arts & Science (Affiliated to Bharathidasan University, Tiruchirappalli), Pudukkottai, Tamil Nadu, India

Cite This Article: P. Vignesh, Dr. B. S. Sha Yin Sha & Dr. M. Suresh Kumar, "Evaluation of Flexibility in Two Training Programs for Volleyball Players: Prediction of Physical Parameter", International Journal of Interdisciplinary Research in Arts and Humanities, Volume 10, Issue 1, January - June, Page Number 123-125, 2025.

Copy Right: © DV Publication, 2025 (All Rights Reserved). This is an Open Access Article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Abstract:

The purpose of the study was to find out the influence of two training methods on flexibility of Volleyball players. To achieve this purpose of the study, sixty volleyball players from Tiruchirappalli, Tamil Nadu, India were tested. Age group between 18 to 21 years. They were divided into three equal groups of each twenty subjects. The group I aerobic training group, group II weight training group conducted test for three days per week for twelve weeks and group III acted as control. The following variables namely flexibility was selected as criterion variables. The flexibility was assessed by sit and reach in centimeters. All the subjects of three groups were tested on selected criterion variables at prior to and immediately after the training programme as pre and post test selection. Analysis of covariance (ANCOVA) was used to find out the significant difference if any, among the groups on each selected criterion variables separately. In all the cases .05 level of confidence was fixed to test the significance, which was considered as appropriate. And there was an improvement as per selected criterion variables namely flexibility with respect to two training methods training.

Keywords: Aerobic Training, Weight Training, Flexibility, Volleyball Players.

Introduction:

In the last few decades sports have gained tremendous popularity all over the globe. The popularity of sports is still increasing at a fast pace and this happy trends is likely to continue in the future also. Performance sports aim at high sports performance and for that the physical and physique and psychic capacities of sportsmen are developed to extreme limits. Physical fitness is now defined as body's ability to do functions effectively and effectively in work and leisure activities, to be healthy, to resist hypo kinetic diseases, and to meet emergency situations. Physical fitness is the capacity of the heart, blood vessels, lungs and muscles to function at optimum efficiency. "Aerobics" basically means living or working with oxygen. Aerobics or endurance exercises are those in which large muscle groups are used in rhythmic repetitive fashion for prolonged periods of time which has a positive impact on Volleyball players. (Zaffer & Khurshid, 2018).

Methodology:

The purpose of the study was to find out the influence of two training methods on flexibility of volleyball players. To achieve this purpose of the study, sixty volleyball players from Tiruchirappalli, Tamil Nadu, India were tested. Age group between 18 to 21 years. They were divided into three equal groups of each twenty subjects. The group I aerobic training group, group II weight training group conducted test for three days per week for twelve weeks and group III acted as control. The following variables namely flexibility was selected as criterion variables. The flexibility was assessed by sit and reach in centimeters. All the subjects of three groups were tested on selected criterion variables at prior to and immediately after the training programme as pre and post test selection. Analysis of covariance (ANCOVA) was used to find out the significant difference if any, among the groups on each selected criterion variables separately. In all the cases .05 level of confidence was fixed to test the significance, which was considered as appropriate.

Statistical Analysis:

Analysis of covariance (ANCOVA) and Scheffe's post hoc test.

Flexibility:

The analysis of covariance of the data obtained for flexibility of pre-test and post-test for aerobic training group, weight training group and control group have been presented in Table I.

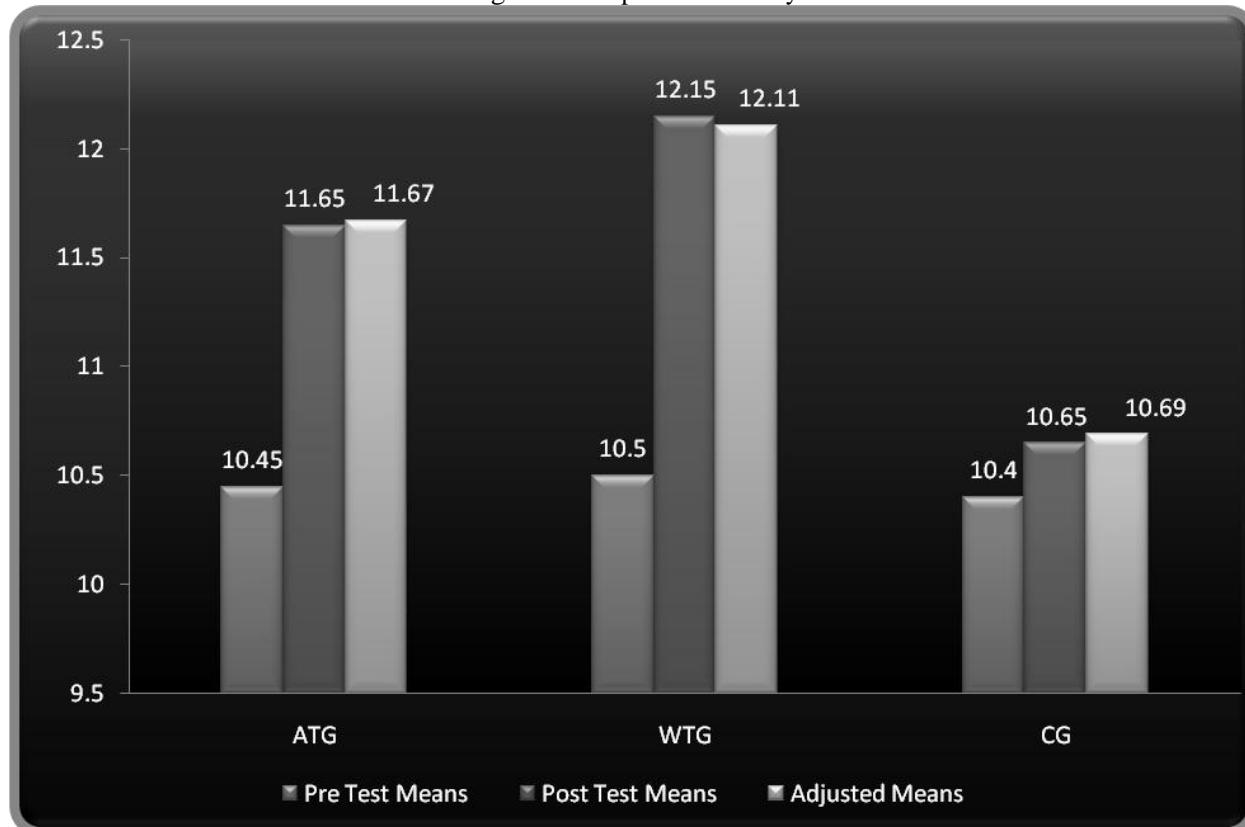
Table 1: Analysis of Covariance of the Data on Flexibility of Pre and Post Tests Scores of Aerobic Training Group, Weight Training Group and Control Group

	Aerobics	Weight	Control	Source of Variance	Sum of Squares	Df	Mean Squares	Obtained F
Pre Test Mean	10.45	10.50	10.40	Between	0.10	2	0.05	0.06
				Within	46.75	57	0.82	
Post Test Mean	11.65	12.15	10.65	Between	23.33	2	11.67	11.95*
				Within	55.65	57	0.98	
Adjusted Post Test Mean	11.67	12.11	10.69	Between	20.92	2	10.46	23.58*
				Within	24.84	56	0.44	

* Significant at .05 level of confidence.

(The table values required for significance at .05 level of confidence for 2 and 57 and 2 and 56 are 3.16 and 3.17 respectively).

Table 1 shows that the pre-test means on flexibility of aerobic training group, weight training group and control group are 10.45, 10.50 and 10.40 respectively. The obtained 'F' ratio value 0.06 is less than the required table value 3.16 for 2 and 57 at .05 level of confidence on flexibility. The post-test means on flexibility of aerobic training group, weight training group and control group are 11.65, 12.15 and 10.65 respectively. This obtained 'F' ratio value 11.95 is greater than the required table value 3.16 for 2 and 57 at .05 level of confidence on flexibility. The adjusted post-test means on flexibility of aerobic training group, weight training group and control group are 11.67, 12.11 and 10.69 respectively. This obtained 'F' ratio value 23.58 for adjusted post-test is greater than the required table value 3.17 for 2 and 56 at .05 level of confidence on flexibility. The results of the study indicated that there was a significant difference between the adjusted post-test means of aerobic training group, weight training group and control group on flexibility. Since, three groups were compared, whenever the obtained 'F' ratio for adjusted post test was found to be significant, the Scheffe's test to find out the paired mean differences and it was presented in Table II.


Table 2: The Scheffe's Test for the Differences between Paired Means on Flexibility

Means			Mean Difference	Required C.I
Aerobics	Weight	Control		
11.67	12.11	-	0.44	0.53
11.67	-	10.69	0.98*	0.53
-	12.11	10.69	1.42*	0.53

*Significant at 0.05 level of confidence

The table 2 shows that the mean difference values between aerobic training group and weight training group, aerobic training group and control group, weight training group and control group, 0.44, 0.98 and 1.42 respectively on flexibility. The CI value was 0.53 significance. The results of this study showed that there was a significant difference between aerobic training group and control group, Weight training group and control group on flexibility.

Figure 1: Graph on Flexibility

Conclusion:

It was concluded that aerobic exercises and weight training groups were significantly improved flexibility of the volleyball players.

References:

1. Astrand, Perolot (1977). Text Book of Work Physiology, New York: Mc Graw Hill Book Company, P 398.
2. Chandler, T.J. (1994). Physiology of aerobic fitness/endurance. Instr Course Lect. 1994 ;43 :11-
3. Felipe Lovaglio Belozzo, Carlos K. Katashima, Andre V. Cordeiro, Luciene Lenhane, Jean F. Alves, Wagner Ramon Rodrigues Silva (2018). Effects of ninety minutes per week of continuous aerobic exercise on blood pressure in hypertensive obese humans. Journal of Exercise Rehabilitation 2018; 14(1): 126-132.
4. Gothi, Ekta (1993), Dictionary of Sports and Physical Education, New Delhi: Academic Publishers, P. 25.
5. Jabakumar, KI. MS Kumar, R Kalidasan, Influence of e-content based coaching on selected fundamental skills in field hockey, Recent Research in Science and Technology, Vol 3, No.1, 2010, 59-62.
6. Madhu HJ, K Ivin Jabakumar, M Suresh Kumar (2025). Influence of Battle Rope Training and its Effect on Selected Physical Variables among Volleyball Players. South Eastern European Journal of Public Health, XXVI, 821-824.

7. MS Kumar, Impact of sport vision training for enhancing selected visual skills and performance factors of novice hockey players. *Journal of Movement Education and Exercises Sciences*, Vol 1, No. 1, 2011, 1-5.
8. Pintu Sil (2018). Effect of aerobic dance with music on selected health related fitness parameters among adolescent school girls. *International Journal of Yoga, Physiotherapy and Physical Education*, 3, 1.
9. Raghu GM, K Ivin Jabakumar, M Suresh Kumar (2025). Bosuball training and its impact towards physical variables of handball players, *South Eastern European Journal of Public Health*, XXVI, 548-552.
10. Rajkumar & P. Malipatil (2018). Effect of eight weeks aerobic exercises on physical and physiological variables among middle aged women, *International Journal of Yoga, Physiotherapy and Physical Education*, 3, 1.
11. Sonia Shalini, Raghvendra Shukla & Dr. Dhananjoy Shaw (2018). Effect of step aerobic training for six weeks with 6 inches step platform at 118 and 126 beats per minute (BPM) on kinematic (Partial temporal) variables. *International Journal of Yoga, Physiotherapy and Physical Education*, 3, 2.
12. Zaffer Manzoor, Khurshid Ahmad Hurrah (2018). Effect of aerobic training on flexibility among endomorph students. *International Journal of Yoga, Physiotherapy and Physical Education*, 3, 2.
13. Zahoor Ul Gani & Dr. P Karthikeyan (2017). Impact of moderate and high intensity aerobic exercise on selected bio motor performance of middle aged women Volleyball players. *International Journal of Yoga, Physiotherapy and Physical Education*, 2, 5.